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the discontinuities do not agree with the characteristic velocities, than the number of 
characteristics leaving both discontinuities in the domain separating then will equal the 
orderofthesystem, i.e., thenumberofindepandentvariables characterizingthe state between the 
disconUnuities. Ifallquantitfee characterizingthe statebetweenthediscontinuities areelix- 
inatedfromtherelatfonshipsonthediscontfnuities (atleastmantally),thenthenu&erofre~in- 
ing relaU~s~ps~nnecUng~e~antiUe5wi~~eextemalsi~sof~e systemofdiscontinuities 
andthevelociUesWtand We ofthediscontinuitieswilltgualthen~erofcharactaristicsdepart- 
ingto theoutsidepluatwo. JustaemanyrelationahfpaareevidentlyneededtofMtheperturbations 
outside the system of discontfnuities and the perturbations of their velocities. 

As already noted, if Wr== We, then the sequence of such two discontinuities could be 
considered one discontinuity with all the conservation laws satisfied on it. This discontinu- 
ity is evidently non-evolutionary since, according to the above, the number of boundary 
conditions thereon exceeds the number of characteristics leaving it by two. Moreover, upon 
actual interaction with small perturbations, the velocities W, and W, can receive different 
increments, the jump is split and the perturbations cease to be small. If W, and W, are 
considered to be identically equal in the relations on the discontinuity (i.e., itisconridered 
that the increments of these quantities are also equal), then the solution of the problem of 
interaction between the discontinuity and arbitrary small perturbations will not exist. 

By reasoning similar to that presented above , it can be seen that if there are m 
evolutionary disoontinulties moving at the same velocity u’, = W, = . ..= W,, then the number 
of independent relationships on such a discontinuity from which quantities characterizing the 
state between the diascontinuities are eliminated (or did not enter from the very beginning), 
should exceed by mthe nuaber of characteristics leaving such a combined discontinuity. 

Hence, the following recommendation can be formulated. If there is a discontinuity on 
which the known relationships (following from the conservation laws, say) are too many for 
evolutionarity as a single discontinuity, then several evolutionary discontinuities should be 
sought which will turn into the discontinuity of interest to us when their velocities are 
equal. 
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THE CONTACT-HYDRODYNAflIC PROBLEM OF LUBRICATION 
THEORY FOR ELASTIC BODIES WITH CRACKS * 

1.1. KUDISH 

A mechanical model of lubricating solid bodies weakened by cracks 
is proposed. The model can be used to explain the reason for fatigue- 
induced crumbling of the surfaces. The presence of boundary and sub- 
surface cracks is taken into account, and the interaction of the 
lubricant with elastic bodies within the cavities of boundary cracks is 
regarded as the most interesting aspect of the problem. Conditions are 
obtained characterizing the actual behaviour of the lubricant within 
the crack cavities, taking into account the pressure rise in the closed 
cavities completely filled with the lubricant and the possible onset Of 
cavitation. The problem is reduced to a system of non-linear integro- 
differential and linear integral equations with additional conditions 
in the form of equations and inequalities. 

The method of regular perturbations is used to study the state of 
weakly loaded elastohydro@namic contact. In this casa the problem is 
reduced to a sequence of purely hydradynamic boundary value problens for 
the non-linear or linear ordinary differential equations, and elastic 
problems for the linear integral equations with one-Sided ConStrafnts. 

The effect of the temperature and lubricant on the contact stresses, 
taking the roughness of the bodies into account, was analysed in /l-3/ 
and the development of cracks and their influence on long-term fatigue 
in /4-71. 
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1. Formulation of the problem. Consider the plane isothermal problem of two 
infinite circular cylinders rolling slowly on each other. The cylinders have parallel 
generatrices, with radii RI and Rt, and are separated by a thin layer of lubricant (an 
infinite cylindrical cavity in an elastic body can serve as one of the cylinders). A 
compressive linear force P acts on the cylinders. We shall assume the cylinders to be smooth 
and made of the same elastic material weakened by the cracks. We assume for simplicity that 
the lubricant is an incompressible Newtonian fluid. 

The above assumptions together with the assumption that the lubricant layer is thin 
compared with its spread /1,3/, yield the following Reynolds equation: 

describing the behaviour of the lubricant in the contact area. When deriving (1.11, we also 
assumed that the cavities formed by the cracks open to the surface (boundary cracks) are 
filled with lubricant. In (1.1) I is the abscissa in a coordinate system attached to the 
median line in the lubricant layer whose ordinate passes through the centres of curvature of 
the cylinders p-p(z) is the contact pressure, A= h(z) is the gap between the bodies in 
contact, p = p @) is the lubricantdynamicviscositycoefficients, and z&* and %' are the 
linear velocities of the points on the surfaces of the lower and upper body. Figure 1 
depicts the rolling cylinders and pressure between them. 

We shall consider the stress-strain state in elastic bodies, assuming for simplicity 
that there are no cracks in the upper cylinder, and N rectilinear cracks in the lower cylinder. 
We also assume that 1) there is no friction at the crack edges of 2) there is no friction and 
the edges of open cracks and full coupling occurs at the closed segments of the crack edges. 
The first type of boundary conditions corresponds to the weak , and second to the strong 
interaction of the material of the bodies. 

Taking into account the pressure p(z) applied to the boundaries of the bodies in contact 
we find, that under the above assumptions, the stress-strain state of the cracks in theloner 
body is described, in the quasistationary approximation, by the system of equations 16,7/ 

Figure 2 shows the general pattern of crack distribution in an elastic body, and the 
relative position of the fundameneal and local coordinate system. Rare x,, is the abscissa 
of the local coordinate system associated with the n-th crack, and a,, is the angle between 
the abscissas of the local and fundamental coordinate systems, r,," are the ccmplexcoordinates 
of the origin of the local reference system associated with the n-th crack, Z,, is the half- 
length of the n-th crack, .a,, and a,, are the corresponding jumps in the normal andtangential 
displacement of the edges of the n-th crack, 
n-th crack, E'= EI(I. - 

p,, is normal force applied to the sdges of the 

and z. 
Y*) is the normalized modulus of elasticity of the body material, r., 

are the coordinates of the points of entry to and exit from the region of contact in 
the fundamental coordinate system, and bSr is the Rronecker delta. 

Let us now analyse the conditions which must be added to fl.Z)-(1.41, depending on whether 
the cracks are boundary or subsurface, and whether their edges close or not. 

We shall consider subsurface cracks first. At the open segments of the cracks the 
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normal stresses are zero, and positive at the closed segments. As a result we obtain the 
following system of alternating equations and inequalities: 

Fig.1 Fig. 2 

In the case of type 2) boundary conditions we must supplemenr relations (1.5) at the 
closed segments of the cracks, with the condition 

Let us pause and consider the case of boundary cracks. Let us consider the n-thboundary 
crack whose tip emerges at the surface of the body at the point z"r 2," f l,,wsa,,si@u,,. We 
&$I__ ;ay that the neck of the crack is open when v,,(Z,,sipq,)>O and closed when v,,(&,sign 

. We assume that the crack in question has several segments in which the edges are 
closed. The crack has a number of cavities containing the lubricant. The cavities are not 
connected to each other, nor to the lubricant layer covering the body. We shall assume that 
the lubricant within the cavities is in a state-of hydrostatic equilibrium, and we require 
to establish the additional conditions at every segment of the crack mentioned above. 

Physical considerations imply that n,,(r,,)> 0. Let us find the singly connected, non- 
intersecting sets of points sugpu,' (s,,') for which u,,(z,,)> 0. We shall number these sets 
(cavities) beginning from the surface of the body. We have, in each of the sets suppu,', an 
inherent constant lubricant pressure, generally speaking not known in advance. We shall 
therefore denote the corresponding stresses at the crack edges caused by the lubricant 
pressure, by pn( (i = i,2, . ..). Let the neck of the crack be open, and the adjacent set be 
supp v,'. Here the cavity smPPV,l is in contact with the surface layer of the lubricant, 
therefore it is natural to assume that the pressure within the cavity SUPPV,'~ is equal to 
that within the neck. We have 

h1--~(zn"+k,caJc~en49 v,(Wen~)>O (1.7) 

ILSien%I=131n0+1MhoI 
Next we turn our attention to the cavities SuPP 0,' which are not in contact with the 

lubricant surface layer through the neck. Clearly, the cavities not in contact with the 
lubricant layer are defined by the set of indices 

I&++uPPn! ,(~Z*mP=-q+=0, f424 

We assume that the limiting tensile strength of the lubricant fluid is zero. Then the 
stresses in the crack cavities p,'<O. FEZ,,. 
considmrthei-thcavity: suppu,', fE[,, (rwa).Wenote thatwhenthebodymoves,itsstress-strainstate 
changes, so that the confiyuration of the i-th cavity of the n-th boundary crack alsochanges. 
Aowever, the volume of the i-th cavity cannot be smaller than the volume of the lubricant 
filling the cavity. This follows from the incompressibility of the lubricant. Thus we have 
V,,'> V,i where V,,,,' is the volume of the lubricant in the i-th cavity and 

v:-P.'(s"4- s %(%I) a+, 
.IIDDQ' 

is the volume of the i-th cavity. A sore detailed study leads to following conclusions: if 
voids, i.e., lubricant-free volumes, appear in the i-th cavity, then p,,'==O, while when the 
lubricant occupies the whole cavity , we have pi<0 (the vapour pressure of the lubricant 
fluid in the void and the surface tension of the lubricant are both neglected). We see 
the appearance of the cavitation phenomena, and as a result we have the system of alternate 

equations and inequalities 

fiiwz0, VC>VL, 

po‘<O. v,i=vL* 
~EZ,,(~;P); I~sin41=ly,“+‘Irh(~~“)l 

(i.9) 
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The method of determining the lubricant volume VI%: will be given below. 
We note that conditions (1.9) for the i-th cavity hold, as long as the neighbouring 

cavities do not come into contact with it, i.e. 

supp v,’ n supp f&j = 0. t * f; d, I E Z, bnO) (1.10) 

Relations (X.8)-fl.iO) represent the necessary additional conditions, from which we 

obtain the a priori unknown stress p,’ acting at the boundary of the cavity supp uni, t E Z,, (z,.,?. 
Next we consider the method of determining the volumes V,” of the lubricant within 

the cavities suppv,'. previously, when deriving relations (1.9), we had in fact assumed 
that initially, i.e. when msxs,,*= -es, all boundary cracks were open and filled with 
lubricant. As the bodies move, the cracks approach the region of contact Izi,&), at the 
same time changing their configuration. 

Let us consider the behaviour of the n-th boundary crack during its motion. Let the 
edges of the n-th open crack be not in contact at the points z=J,,~-E (s-,+0) where its 
centre is situated, and let the edges cloSe at the point r= GE,,' so that k cavities supp 

‘ 
VII * 

i= !,2,...,&EZ,(&+? are formed simultaneously. Then the volumes V,'(s5y of these 
cavities will coincide with the volumes V,t of the lubricant enclosed within #em, i.e. 

The additional condition imposed on p*' is obtained fsom the assumption that the press- 
ure in the lubricant fluid varies continuously. 

further, when k cavities supp ~,t, I = 1, + i, . . ., 4+- k E Z, (G” - E) merge sim~ltane~~sl~ 
into a single cavity supp vSJ, /=I, (~7, as e-c f 0. we obtain 

The case when the cavity suppv,,* gives rise, at some point where the centre of tie 
n-th boundary crack lies, simultaneously to k cavities suppv,',2 0~ t,+i, . . ..i. +k~l,(~?, 
is more ccmplicated. If for an arbitrarily small c> 0 there were no voids (V,,‘- VS.‘, in 
the initial cavity, then by virtue of the continuity the cavities formed will also have no 
voids. Similarly, from continuity considerations we find the additional conditions for p*< 
Thue we have 

Let us now consider the case when the initial cavity contains a void, i.e. V%j> Vn,j. 
i?e assume that in the presence of a void the lubricant layers are adsorbed on the boundaries 
of the cavity in volumes proportional to the volumes of the cavities. Keeping this in mind, 
we obtain 

v&W ,"f*"'v*&, P5'==0; ~o+f.*..rie-l-IC~z*(XnOf; li.i4) 

?Jr supp v,' (q,P) =& supp u,j (zSo - e): Vmr (s,” - E) > VL 

fEZ,(xno-e~ e>O; “==V~/,j_ jrr.ds. 
* 

Thus we have formulated all the necessary conditions within the cavities of the boundary 
cracks containing the lubricant. 

When considering the segments of the boundary cracks with closed edges, we shall require 
that the following relations hold (the relations follow from the fact that no external forces 
act an the segments of the crack edges in question): 

R(4)<O,tl.(~)~0,II,Sino;,I=I~+'r(3c(~~I 4.15) 

In addition, in the case of type 2) boundary conditions the following relations must hold: 
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Let us write the equation describing the gap between two contacting surfaces. Using 
the expression for the displacements of the half-plane boundaries with and without cracks, 
we find /l,?/ 

where ce is an arbitrary constant, wk', wb* and wa are kernels and R’ is the normalized 
radius of the contacting bodies. 

The value Of the Constant Ce is chosen so that the following relation holds at the 
point of exit from the area of contact: h(t,)= h, where L denotes the previously unknown 
lubricant layer thickness at the point r-r,. 

To close the equations of the problem we must add to them the conditions of contact 
pressure at the entry and exit points, and the condition of statics /l/ 

XI 
dp 

P 0%) - P 6%) -a;: (2,) = 0. s 
p(z)dzn.P (1.19) 

=i 

We note that the ClaSSiCal formulation of the contact-hydrodynamic problem in which the 
entry coordinate I, is assumed known, is adopted here. 

Thus with the constants ~',~'.R', E', P, I*, {ah, ~k~,y,~,l~),k = 1,2,.. .,N and functions 
p(p) given, we have to find from the solution of the problem the constants r*, 4 and 

functions P (4. k (4, {Y (sBJ, ur (6 pt W. k = 1, 2, . . ., iv. 
Baving solved the problem in terms of the known intensity coefficients k&(n = 1,2,..., 

N and i = i,2), we can find the angles &,* of the initial distribution of the cracks /5-7/. 
Analysing the formulation of the problem given above we find, that the fatigue fracture 

of the material of the bodies can have two causes:11 development of subsurface cracks and 
their emergence to the surface and 2) interaction of the lubricant with the boundary cracks 
leading to disintegration of the material. The idea of the development of subsurface cracks 
with consequent fatigue fracture was developed in many theoretical and experimental invest- 
igations (see /4,5/). It was assumed in the literature that the lubricant penetrating the 
boundary cracks acted as a wedge leading to fracture of the material. In the formulation used 
above the wedge effect of the lubricant appears when high pressure pni is created within the 
cavity caapletely filled with lubricant (Vs '- Vn?),. adjacent to the inner tip of the boundary 
crack. The excess pressure leads to development of the crack and subsequent fracture of the 
material. In a number of cases the process may lead to the well-known mechanism of fracture 
by peeling. However, another cavitation mechanism of fracture in contacting bodies is also 
possible. Indeed, if there are voids in the cavities of the boundary cracks containing 
the lubricant, then as we know /a/, considerable stresses appear in the lubricant near them 
when they collapse. These stresses also lead to fracture of the solid surface adjacent to 
the voids /a/. It appears in view of this, that cavitation in a number of cases, can play 

a major role in the fracture of lubricated surfaces. 
An attempt was made earlier /9/ to formulate and solve a plane, contact-hydrodynamic 

problem of the theory of lubrication for the case when one of the contacting bodies has a 
boundary crack. However the additional conditions of the type (1.7)-(1.16) allowing for the 
behaviour of the lubricant within the cavities of the boundary crack were not formulated in 
/9/, and the investigation was actually carried out under the assumption that there were no 
such cavities. It is clear that this assumption does not always agree with reality and can 
therefore distort the picture of the phenomenon appreciably. 

Thus we have formulated a plane , contact-hydrodynamic problem of lubrication theory, 
taking into account the mechanical effects arising within the boundary cracks of the elastic, 
lubricated body. The possibility of partial overlap of the cracks edges was alsorecognised 
and the problem was reduced to a non-linear boundary value problem With one-sided Constraints. 

2. Weakly loaded contact. Let us consider the simplest case of a weakly loaded 

contact _ me shall assume that the lubricated contact is weekly loaded if the influence of 
deformability of the elastic cylinders on the thickness of the lubricant layer end the codact 

pressure is small. The problem is studied using the method of regular asymptotic expansions 
/2,3,10/q helow we shall show that in the case of a weakly loaded contact the problems for 

the principal terms of the asymptotic expansions p(z),k(+),z,,k. and principal terms of the 
asymptotic expansions (L+ (4, UB (4. pr (Ml k = 1, 2, . . .I N are separable and can be solved 

one after the other. * -11 also obtain and study the equations for further terms of the 
asymptotic expansions of p(s).n(t).~. and 4. 

using the dimeneionless variables /3/ 
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(8 is a dimensionless constant) we write the equations and inequalities for the problem in 
question in the form (the primes are omitted) 

y(k--qE22-c*+ p@)~$+W- 
0 

ids, t- vk’ (t) [w,’ (t, 2) - wk’ (t, cl]+ pk' (t) iw,’ & z) - w,’ (tt ‘$1) df 

-I- 2 ( .(vt’ (t) at (L I n --k’(L)V:k(l,S,))dl=.np,(~)-Sp(l)DDr(r,Z,)dr ) 
k-l -1 0 

(2.3) 

pn h) - 0 when v, @,J > 0 
pn(s,,)<Owhenv,(z,,)= 0 

(2.4) 

(the regions suppu~(z,,") are numbered beginning at the opening of the crack). 
When type 2) boundary conditions hold at the crack edges, we must supplement relations 

(2.4) by the conditions 

u,(r,,) = Owhenu,, (r,,) = 0; n = i, 2, . . ., IV (2.5) 

The kernels Wkrr Wki, U,,*‘, V,,k’, U,,ki, V,,ti, L3,,?, D,* in (2.2) and (2.3) have the form (1.3), 
while the quantities X,,, T, and z~* take the form 

X,,==&,Z,,~~~ + z,', Tk=Gkfeiak +z,“, (2.6) 

zk”= %O+ i [Yk’ + + h (Sk-)] 

In (2.4) we have assumed that 

and the constants V,,’ can be found from the relations (i.H)-(1.14). 
Largevalues of the parameter V correspond to the state of weak loading. For thisreason 

we shall assume that V> 1 and seek the solution of the problem (2.1)-(2.7). (1,3),(l.li)- ($.fJ) 
in terms of asymptotic series in non-negative integral powers of V-l. Carrying out the 
substitution with the independent variable 

we shall assume that 

(PY pnv Pn”* h. V,, 4v t. Cl - fit (Pk. p-9 Pkk, hk, Va, I&, ‘Vk, Cr} V-’ (2.9) 

Let us consider the simplest case p s i, Then substituting (2.9) into the equations 
and inequalities of the problems and equating the coefficients of like powers of v, we obtain 

a series of problems for the consecutive terms of the asymptotic expressions of the solution. 
We obtain for p”. h,,yo and cg /3/ 
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q(r) a.7 [ arctg + + b= 
b’ + z’ 

The constants pa and Co are found from the solution of the following set of equations: 

4 (c.) - P (a) - 8 i2:ii) 

Integrating the equtions for subsequent terms of the asymptotic expressions for pl.4, y1 

and cl, we obtain 

s, (x0) + $e(zO)} (2.12) 

where the constants v1 and cl are found from the solution of the following set of linear 
equations: 

3% (co) I%+ 
b’ 

4-_0 e, (6) CI - - w (~0) (2.13) 

3Se,(s)dz,y,c~CSe.(l)d=+~~cl---yoSe(r)d= 
6 0 a 

The expressions for the functions Q(Z) and e,(z) from (2.12) and (2.13) are as 
accurate as those given in /3/, and the function E(z) has the form 

Since the relations for determining the principal terms pno, p,,oir~,,o and u,,~ of the 
asymptotic expressions occurring in (2.4) are linear, it follows that they are identical with 
(2.3)~(2.7). (1.3), (l.ii)-(1.14) provided that a subscript zero is added to all unknown quantities. 
We note that the right hand sides of the relations shown contain the quantities p*(z),ho(z),yo 
and e. alreadydetenainedfr~(2.10) (2.11) andthesecond relation of (2.14) 

Thus we have succeeded, in the case of a weakly loaded contact, in reducing the initial 
problem for the bodies with cracks, to a sequence of purely hydrodynamic and purely elastic 
problems. When p = 1 the initial problem was reduced to that of solving system (2,11), then 
solving the problem of, the stress-strain state of an elastic half-plane with cracks (2.3) - 
(2.7). (1.3), (i.ii) - (1.14) at p - p*, h - ho, y = y. and e = co, and finally system (2.13). 

We stress that the principal terms PO(Z), h,(z), y. and co of the asymptotic expansions 
are independent of the presence of cracks in the bodies, and the subsequent terms of the 
asymptotic expansions, e.g. P’ (t), Al Cd. n and cl. depend onthadistribution of the cracks 
relative to each other and to the region of contact [u,co). For this reason we shall have, 
particularly in the quasistatic formulation adopted here, yr = yr(rr") and cr = cl@<). 

Clearly, when the body contains only subsurface cracks, we can come to a qualitative 
conclusion concerning the increase in the thickness of the lubricant layer A, as compared 
with the case when the body has no cracks. At the same time, it is hardly possible to comment 
on the behaviour of the thickness of the lubricant layer h, when the bodies contain boundary 
cracks. 

The author thanks V.M. Aleksandrov for useful discussions. 
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AN ASYMPTOTIC APPROACH TO THE PROffLEflS OF THE THEORY OF 
ELASTICITY OF BODIES OF FINITE DI#ENSIONS* 

G.I. ROMENSKAYA and M.A. SUMBATYAN 

A method is developed to solve the equilibrium problems of elastic 
bodies of fixed dimensions, based on a separation of the boundary-layer 
part of the solution by considering the problem for a half-strip. A 
closed solution in quadratures is constructed for the half-strip with a 
free lateral face and with given normal displaced longitudinal boundaries, 
using both symmetric and antisymmetric loading. When the normal stresses 
on the front boundaries are specified, the problem reduces to an integral 
equation of the first kind in a semi-infinite interval, the inversion of 
which is obtained by reduction to an infinite system of algebraic equations. 
The approach considered for problems of bodies of finite dimensions is 
asymptotic with respect to the small parameter characterizing the body's 
thickness. Testing of the method on a plane problem for an elastic 
rectangle enables the range of variation of this parameter to be invest- 
igated, in which this procedure is fairly accurate. In the example 
considered, for the case of a rectangular area, the stresses are found 
and compared with the results obtained earlier by other methods. The 
nature of the influence of the boundary layer on the stress distribution 
inside the body is investiaged. 

Asymptotic methods, used for bodies of slab configuration, one of 
whose characteristic dimensions (thickness) is significantly less than 
the other two /l-4/, can obviously be classified into three types. The 
first of them /5,6/ is characterized by the application of joined 
asymptotic expansions to a certain class of solutions of the equations 
of the theory of elasticity, namely uniform solutions. The second type 
/?,a/ is distinguished by an asymptotic analysis of the equations of 
the theory of elasticity. From this it is cledr that, to separate the 
boundary-layer part of the solution , it is enough, to a first approx- 
imation, to examine the two-dimensional problem and the problem of torsion 
for the half-strip, the lateral face of which is combined with the 
generating lateral surface of the plate at a given point. Finally, the 
third class includes the Vekua-Poniatovskii theory /9,10/, in which 
asymptotic methods are also developed /ll/. In this sense this paper 
relates to the second of these methods. 

1. In a Cartesian system of coordinates z,y we will examine the statical problem of the 

two-dimensional deformation of an elastic isotropic half-strip (the x-axis is the axis of 
symmetry and is directedparallelto the side faces , and the 3)-axis lies in the place of the 
half-strip end face) with the following boundary conditions: 

x = 0, ZXU = 0, 0, = 0 (1.1) 

Y=~l,?,,=0,ug=-J""(2) 

We will assume the boundary function f(x) to be .fairly smooth. 
In this symmetric case, (the extension-compression case), the problem was examined in 

/12/e where its closed solution was obtained, based on the theory of dislocations. Here a 
similar result will be obtained using the well-known classical representation of the solution 
for a half-strip (v is Poisson's ratio) /2/ 

U& [A(s)shsy+ C(s)ychsy]cossrds + 
0 
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